Nejste přihlášen/a.

Přihlásit se do poradny

 

Slovní úlohy

Od: artik* odpovědí: 29 změna:

Dobrý den všem ,

chci poprosit o radu jak počítat a jak postupovat ( výsledek není důležitý , spíše to potřebuji pochopit ) u dvou příkladů . Ze školy jsem už hodně dlouho a tohle už fakt nedávám .

Děkuji za vysvětlení a případné rady .


Slovní úlohy

 

 

29 odpovědí na otázku
Řazeno dle hodnocení

 

 

hodnocení

5x
avatar kartaginec

V prvním případě bych si první z těch celých čísel označil třeba n. "Po sobě jdoucí" znamená "i jedničku větší". Takže druhé číslo bude n+1, třetí n+2 a tak dále. Podmínku úlohy zapíšu do rovnice (n2 + (n+1)2 + (n+3)2 = (n+4)2 + (n+5)2) , což je kvadratická rovnice pro n

Ve druhém případě bych spočítal součet druhých mocnin čísel 3,4 a 5 a načel bych koeficient, kterým je třeba je násobit, (čímž jejich poměr byde zachovánú, aby vyšlo to, co chci-

artik*
hodnocení

Díky moc za radu , nyní se to budu snažit pochopit :D . Ještě dotaz , kam se podělo u prvního příkladu n+2 a rovnou je tam (n+3 ) to celé na druhou . Pro vás je to sranda ,ale já jsem úplně vedle . Děkuji

luke237
Protoze tam ma preklep. Omylem vynechal dvojku v te posloupnosti. Vice v me odpovedi nize, kterou jsem poslal bez obcerstveni teto stranky a tak jsem nevidel, ze Kartaginec poslal to same jako ja mnohem drive, nez jsem zacal psat svoji odpoved.

Přesně tak, omlouvám se tazateli.

 

hodnocení

2x
avatar axus

Oba priklady se nechaji resit napr. jako soustavy rovnic.

-

U prvniho prikladu je to pet rovnic pro pet neznamych:

Plati, ze

a2+b2+c2=d2+e2

a zaroven, ze

a+1=b

b+1=c

c+1=d

d+1=e

-

U druheho pripadu jsou to tri rovnice pro tri nezname:

Plati, ze

a2+b2+c2=1250

a zaroven, ze

a/b=3/4

b/c=4/5

 

luke237
hodnocení

0x

Tri po sobe jdouci cela cisla jsou: n, n+1, n+2
soucet jejich druhych mocnin je: n2 + (n+1)2 + (n+2)2
Soucet druhych mocnin po nich nasledujicich cisel: (n+3)2 + (n+4)2

Rovnice upravis podle vzorce (a+b)2 = a2 + 2ab + b2 a vyresis. Jako kontrolu vis, ze "n" ti musi vyjit cele cislo (bylo to v zadani).

Podobne se bude resit druhy priklad.

artik*
hodnocení

perfektní , děkuji, jak jednoduché , když se to ovládá

doplněno 07.01.14 10:55:

ještě bych poprosil , stejně pěkně popsat druhý příklad .

Díky

luke237
Resil bych to jako Axus nahore.
Po uprave pomeru, ti vyjde: a=3b/4; c=5b/4
Dosadis do te kvadraticke rovnice a spocitas "b". Z neho pak ze zlomku a predchozi radce urcis a,c.
Druhá, malinko pozměněná možnost. Spočtu 22 + 32 + 42 = 29 Když vynásobím dvojku trojku a čtyřku jakýmkoli číslem k (čímž zachovám jejich pomšr), součet se vynásobí číslem k2. Hledám tedy k tak, aby 29k2=1250 k2=1250:29= 43 + 11/29 ≈43,10 k ≈ ±6,5doplněno 07.01.14 12:58: Omlouvám se, postup je dobrý, ale špatně jsem opsal vstupní data.Oprava: Spočtu 32+ 42+ 52 = 5050k2=1250k2=1250:50= 25k ≈ ±5(mně to bylo hned divné, že vychází taková divná čísla)a mám dvě řešení 15, 20, 25a_15, _20, _25
artik*
hodnocení

tak tohle bohužel nechápu :( .

jak upravím poměr , kde se vzalo a=3b/4 , c=5b/4

první příklad jsem pochopil ,ale tohle né :( .

Děkuji za trpělivost

luke237
Ze zadani: a:b:c = 3:4:5, tedy a:b = 3:4 neboli jinym zapisem (zlomkovou carou) a/b = 3/4 .Z toho pak prevedenim b na druhou stranou vyjde to a=3b/4. Obdobne to upravit pro b:c=4:5
artik*
hodnocení

jsem si to rozepsal a už to chápu . Moc děkuju

doplněno 07.01.14 11:41:

ještě do jaké rovnice to dosadím? Sakra ten druhej příklad je dřina :(

luke237
a2 + b2 + c2 = 1250

 

artik*
hodnocení

první příklad mi nějak nevyšel :( x1= 10 a x2= -2

Slovní úlohy #2
luke237

Co ti nevyslo? Vysla ti dokonce 2 reseni: n=10 a n=-2 :)

Zadani tedy vyhovuji posloupnosti cisel: 10,11,12,13,14 a -2,-1,0,1,2.

Pro jistotu jeste udelej zkousku (dosad do zadani).

luke237
Nevim, proc tam pises "x1,2=...", kdyz tvoje kvardraticka rovnice zadne "x" neobsahuje. Obsahuje promennou "n", takze by jsi spise mel psal "n1,2=..."
artik*
hodnocení

Děkuju za upozornění, tady dělám chybu často :( .

 

artik*
hodnocení

Ať nezakládám nové téma . Prosím o radu jak na tento příklad

Součin dvou po sobě následujících přirozených čísel je o 55 větší než jejich součet. Která to jsou čísla . Zase mi nejde o ty čísla ale o logickej postup . Moc děkuju za radu

n x ( n + 1) ... nevím n+(n+1)

V podstatě jste si odpověděl. Součin jste napsal, součet taky, no a to, že součije o 55 větší, prostě znamená, že k součtu musíte tech 55 připočítat, aby nastala rovnost: n x ( n + 1) = nevím n+(n+1) +55
artik*
hodnocení

moc díky, stejně dělám někde chybu , protože mi D vyšlo 223 a mělo by vyjít 225 :( . I tak díky snad to dohledám

doplněno 10.01.14 14:43:

zase znamínko , sakra toková hloupá chyba :D .

Ještě jednou díky za vaše rady

artik*
hodnocení

a ještě jedna úloha - součet druhých mocnin po sobě následujících přirozených čísel je o 24 menší než druhá mocnina součtu těchto čísel .

doplněno 10.01.14 14:52:

n na druhou + ( n+1) to celé na druhou = (n+n+1) to celé na druhou -24

asi hloupost , že

luke237
Podle me je to dobre. *palec*
artik*
hodnocení

nějak se nemohu dopočítat :(

x®

Vychází to n = 3. wolframalpha.com/...

artik*
hodnocení

takže zadání mám dobře ,ale dělám někde početní chybu .Děkuju

 

Co vám vychází? Mně vyšly dva kořeny: n1 = 4, n2 = _ 3

doplněno 10.01.14 16:58:

Pardon, opačně. Rovnice je (n+4) (n_3)= 0, kořeny tedy n1=_4, n2=3. (No a podmínka, že hledáte přirozená čísla, samozřejmě vyloučí tu -4.

artik*
hodnocení

někd emusím dělat početní chybu -4 a -3

luke237
n2 + (n+1)2 = (n+n+1)2 - 24
n2 + n2 + 2n + 1 = 4n2 + 4n + 1 - 24
2n2 + 2n -24 = 0
n2 + n - 12 = 0
D=1-4.1.(-12) = 49
n1,2= (-1 ± 7)/2
n1= 3
n2= -4
artik*
hodnocení

už to vidím už to vidím :( díky chyba v přesunu čísla 1 ( já jí úplně vynechal :( )

Díky pánové

 

 


 

 

 

Přihlásit se k odběru odpovědí z této otázky:

Neneseme odpovědnost za správnost informací a za škodu vzniklou jejich využitím. Jednotlivé odpovědi vyjadřují názory jejich autorů a nemusí se shodovat s názorem provozovatele poradny Poradte.cz.

Používáním poradny vyjadřujete souhlas s personifikovanou reklamou, která pomáhá financovat tento server, děkujeme.

Copyright © 2004-2025 Poradna Poradte.cz. Všechna práva vyhrazena. Prohlášení o ochraně osobních údajů. | [tmavý motiv]