Nejste přihlášen/a.
Z tohoto odkazu se nás týká část Grafické řešení lineárních nerovnic. Původně jsem chtěl k tomu něco napsat, ale ono je to opravdu jasné a navíc i tazatelka to potvrzuje, takže nic, Snad jen pro úplnost upozorňuji, že v části "Grafické řešení soustavy dvou lineárních rovnic" je v obrázku chyba- přepis, ale to nás stejně nezajímá.
No vezmeš si tužku a papír, nejlépe milimetrový.
Namaluješ na sebe kolmé osy "x" a "y". Pak jsou dvě možnosti
1/ Rozdělíš řešenou rovnici na 2 funkce neznámé "x" a to jednu na levé straně rovnice rovnající se funkci na pravé straně rovnice
2/ Na pravé straně rovnice bude nula
No a potom si zvolíš pro 1. případ i pro druhý případ nějaké referenční "x" a vypočteš výsledek. Toto se udělá pro dvě referenční "x" a zanesené body spojíš přímkou.
Pro první případ uděláš totéž pro druhou funkci.
1/ Pro první případ je řešení tam, kde se dvě přímky protnou
2/ Pro druhý případ (a jedna přímka) je řešení tam, kde se přímka protne s osou "x"
Pozor, v zadání bylo "Lineární nerovnice". Stejně se dá začít jak popsáno, ale dál to bude komplikovanější, řešením nebude průsečík, ale množina, nejspíš na ose x vpravo nebo vlevo od toho řešení (pokud jde o nerovnici s jednou neznámou), ale to záleží na sklonu těch přímek, a taky na tom, jestli jde o nerovnici s jednou či dvěma neznámými - v druhém případě by řešením byla nějaká množina v rovině; asi by to chtělo spíš konkrétněji, na příkladě (na příkladech).
Tak to jsem fakt přehlédl, ale jistě jí to kvalifikovně doplníte. Jinak se divím, že se autorka ještě nezapojila!
Děkuji všem za pomoc. Jedná se o linearni nerovinci o jedne nezname. Uvedu příklad 1-4x>x-2, právě by mě zajímalo, jak zjístím jestli je řešení vlevo nebo vpravo. Děkuju
Tohle je zvlášť jednoduché, protože přímka y = 1-4x klesá, kdežto přímka y = x-2 roste, takže jelikož obě strany jsou si rovny (jak píše dále Jirbar, x = 3/5, tak vporavo levá strana bude klesat, pravá růst a nerovnost bude opačná než chceme, tak jak to píše Jirbar. V obrázku od Petapety je to možná nepatrně složitější, ale nicméně graficky, z obrázku, taky jasné.
No řekl bych že pro levou stranu nerovnice sestrojíme přímku probíjající druhým a čtvrtým kvadrantem body [0;1] a [1;-3]
Pro pravou stranu nerovnice sestrojíme přímku probíhající prvním a třetím kvadrantem [0;-2] a [1;-1] (Pochopitelně i částečně protnou i další kvadrant)
Obě přímky se protnou v bodě [3/5;-7/5]
No a když vedeme s osou "y" libovolnou rovnoběžku, která protne obě přímky, tak zkoumáme kdy je "y" souřadnice přímky (protnutého bodu) z levé strany rovnice větší než "y" souřadnice přímky z pravé strany rovnice.
A to platí jen tehdy, když tato rovnoběžka protíná osu "x" v bodě < 3/5
Neneseme odpovědnost za správnost informací a za škodu vzniklou jejich využitím. Jednotlivé odpovědi vyjadřují názory jejich autorů a nemusí se shodovat s názorem provozovatele poradny Poradte.cz.
Používáním poradny vyjadřujete souhlas s personifikovanou reklamou, která pomáhá financovat tento server, děkujeme.