Rovnice se zlomkem a odmocninou

Od: Datum: 14.04.15 16:53 odpovědí: 19 změna: 15.04.15 19:09

Dobrý den, můžete mi nějak pomoci s tímto příkladem? Vůbec nevím co s tím. Moc děkuju.



Seznam odpovědí:
 
moment čekejte prosím, probíhá přenos dat...
Zobrazení struktury odpovědí v otázce
Skrytí struktury odpovědí v otázce
Zobrazení struktury odpovědí v otázce

 

Odpovědi na otázku:
Od: host
Datum: 14.04.15 17:16

zkuste začít převodem na společného jmenovatele... to asi umíte...

Ohodnoceno: 1x
 
Od: mon
Datum: 14.04.15 17:32

Takže to bude (x-"odmocnina"x2-1)*(x+"odmocnina"x2-1)? a co pak?

Datum: 14.04.15 18:00
avatar

Nejdřív bych si ujasnil pojmy. Tohle není žádné rovnice, kterou bychom mohli řečit, ale výraz, který zřejmě máte upravit.

A co myslíte tím "Takže to bude..."? To rozhodně není převedení na společného jmenovatele. to, co jste napsal/a, je ten společný jmenovatel. A co dál? Dokončit ten převod, čili upravit ještě oba čitatele a násoledně roznásobit, co je vhodné. Nepřipomíná vám společný jmenovatel nějaký vzoreček? Měl by, ale pokud ne, nevadí, prostě to otrocky roznásobte a vyjde to taky, i když postup bude trochu delší.

A, last but not least, nezapomeňte na podmínkly.

Ohodnoceno: 0x
 
Od: mon
Datum: 14.04.15 18:22

A jak se upravují ty čitatele?

Datum: 14.04.15 19:03
avatar

Jak jak? Jak se převádí na spolešného jmenovatele? Nusíte oba zlomky rozšířit, každý tím výrazem, který v jeho jmenovateli schází do společného jmenovatele.

Zdá se, že se host mýlil.

Ohodnoceno: 0x
 
Od: host
Datum: 14.04.15 19:40

Vidíte, že pod odmocninou je stále stejný výraz a také ze jednou máte "x + odmocnina" a podruhé "x - odmocnina". Zkuste si to zjednodušit tak, že si řeknete, že "x + odmocnina" je třeba A a "x - odmocnina" je třeba B.

Takže s touto substitucí (nahrazením) bude váš příklad zjednodušeně vypadat A/B + B/A, takže po převedení na společného jmenovatele A.B budete mít A.B + B.A a to celé lomeno A.B a pak se pokračuje dál...

Možná se mýlím, tohle jsem celý život nepotřeboval jenom vyhrabuju zbytky tohoto počítání ze zasunutých koutků paměti. Děti zvyklé na příklady z Bělouna to jistě už mají spočítané a správně.

Ohodnoceno: 1x
 
Datum: 14.04.15 19:52
avatar

Nemyslím, že byste se mýlil v řešení, měl jsem na mysli váš odhad schopností tazatele (... to asi umíte...)

Ohodnoceno: 0x
 
Od: host
Datum: 14.04.15 19:59

uf, to mi padl kámen ze srdce, už jsem se zastyděl, že to řeším špatně...

Jen chci, podobně jako Vy, tazatele trošku trknout, aby se sám chytil pak měl radost z toho, že s malou nápomocí najde správné řešení a podle toho se naučí řešit i jiné podobné školní úlohy

Ohodnoceno: 0x
 
Od: mon
Datum: 14.04.15 20:10

No jo no, ne každý má matematické myšlení, můžete se podívat zatím na to, co jsem spočítala, jestli je to správně a poradit jak se to dělá dál? Děkuju mockrát. :)

Datum: 14.04.15 20:46
avatar

Omlouvám se, drobný přepis tam přeci máte, já reagoval na to předchozí. V čitateli bude A*A + B+B; tp je zíéroveň odpověď na otázku zadavatele: není to dobře.

Ohodnoceno: 0x
 
Od: host
Datum: 15.04.15 14:33

teď koukám, jakou blbost jsem tam narychlo plácnul, kartaginec to napsal správně A.A + B.B to celé lomeno A.B, omlouvám se

Ohodnoceno: 0x
 
Datum: 15.04.15 19:09
avatar

Kartaginec tohle sice napsal správně, ale zato neprávem sepsul "blbost". Tyhle pozdní noční hodiny nejsou nic moc.

Ohodnoceno: 0x
 

 

Od: mon
Datum: 14.04.15 20:03

Je to správně a co dál?

Datum: 14.04.15 20:48
avatar

Prozím, začněte nejprve rozbnásobením jmenovatele, nesmírně se to zjednoduší

Ohodnoceno: 0x
 
Od: mon
Datum: 14.04.15 21:03

A co dál?

Od: blbost
Datum: 14.04.15 23:00

Vždyť to je blbě vykráceno

Čítatel vzorec (a+b) ² = a²+2ab+b²

Jmenovatel (a+b) (a-b) =(a²-b²)

Takže Čítatel = 4x²-2

Jmenovatel =1

Ohodnoceno: 1x
 
Datum: 14.04.15 23:05
avatar

Vy jste to neroznásobil.

Ale snažite se, zkusím to tedy vysvětlit podrobněji. Použiji označení které navrhl host, a vaěeho označení odmocninýy, tedy

x + "odmocnina"(x² –1) = A

x – "odmocnina"(x² –1) = B

a ještě k pozdějšímu použití označím

"odmocnina"(x² –1) = c

Takže zadání je, upravte výraz

A/B + B/A

Zašneme převodem na společného jmenovatele. Jak jste správně uvedl, společný jmenovatel bude A*B. Převod pak spočívá v tomto: Upravíme jednotlivé zlomky rozšíření tak, aby v jejich jmenovateli bylo totéž, tedy

A/B = (A*A)/(A*B), B/A =(B*B)/(A*B) a sečteme:

A/B + B/A = [(A*A)+B*B)]/(A*B) = (A² + B²)/(A*B).

Teď zbývá upravit čitatele a jmenovatele. Doporučoval jsem začít úpravou jmenovatele. Napíšeme ho jako (1 +c)(1–c) a použijeme vzoreček pro rozdíl čtverců. Zkuste to, prozradím, že vyjde 1. No a výrazy v šitateli uoravte podle vzorce pro druhou mocninu součtu respektive rozdílu, a ono se to zase zjednoduší. Zkuste to, snad už to půjde, a když ne, tak se zase ozvěte.

Jak koukám, hodně napověděl i "blbost" (ale taky tam má chybu).

doplněno 15.04.15 09:32: Musím se opravit (bylo už moc pozdě). Ten jmenovatel samozřejmě nenapíšeme (1 +c)(1–c), ale (x +c)(x–c)S tím (tedy s psaním A = (1 +c) , B = (1–c) místo správného zápisu) souvisí i má výtka "blbost"i. samozřejmě to má správně.Takže znovu . Jmenovatel je (x +c)(x–c) = x² –c² = x² – (x² – 1) = 1 , Čitatel: A² +B² = (x +c)² + (x–c)² = (x² +2xc +c²) + (x² –2xc +c²) = 2 (x² +c²) = 4 x² –2A ještě snad rozvedu tu poznámku, že je to blbě zkráceno: ono primárně je to blbě napsáno, a s tím krácemním je to tak, že nemůýete krátit jmenovatel proti kusu čitatele (a to není jediná chyba, ale to je ta základní).
Ohodnoceno: 0x
 
Od: blbost
Datum: 14.04.15 23:18

Fakt teda maturita před 50.ti lety 2x jsem to skouknul a tu chybu nevidím. Asi blbnu a to jsem si ještě nedal slivovičku na dobrou noc

Ohodnoceno: 0x
 
Datum: 15.04.15 09:34
avatar

Omlouvám se, máte to dobře (viz doplnšní výše).

Ohodnoceno: 0x
 

 

 

 

 

Přihlásit se k odběru odpovědí z této otázky:

Neneseme odpovědnost za správnost informací a za škodu vzniklou jejich využitím. Jednotlivé odpovědi vyjadřují názory jejich autorů a nemusí se shodovat s názorem provozovatele poradny Poradte.cz

 
Copyright © 2004-2016 Poradna Poradte.cz. Všechna práva na poradně Poradte.cz vyhrazena.