Komplexní čísla v goniometrickém tvaru

Od: Datum: 07.06.14 16:34 odpovědí: 1 změna: 07.06.14 18:47

Dobrý den, už v pondělí píšeme test a nevím si rady s převodem komplexních čísel v algebraickém tvaru na tvar goniometrický.

Přesněji myslím úlohy, kde si jiý nelze odvodit výsledný úhel z načrtnutého obrázku, napž. zadání z = - (odmocnina3/2) - 1/2. Dokáži si vypočítat z v absolutní hodnotě --> 1. Dokážu i určit sinFí= -1/2 a cosFí= - odmocnina3/2

Nevím ale, jak dál pokračovat, na kaluklačce spočítám oba úhly (-30 stup. a 150 stup.) ale co dál? Dle jakého úhlu se řídit, jak vypočítat hledaný úhel? Mohu přiložit obrázek, pokud je dotaz nepochopitelný.

Opravdu spěchá, děkuji předem za Váš čas.


Seznam odpovědí:
 
moment čekejte prosím, probíhá přenos dat...
Zobrazení struktury odpovědí v otázce
Skrytí struktury odpovědí v otázce
Zobrazení struktury odpovědí v otázce

 

Odpovědi na otázku:
Datum: 07.06.14 18:47
avatar

Popravdě ne zcela vám rozumím, respektive zdá se mi, že vy tomu ne zcela rozumíte; proto se samozřejmě ptáte, ale mně se zdá, že nechápete ani zadání. Ono z = - (odmocnina3/2) - 1/2 je reálné číslo a jeho absolutní hodnota je rovna |z| = (odmocnina3/2)+1/2. Možná máte spočítat goniometrický tvar čísla z = - (odmocnina3/2) - i1/2. Ten snadno z obrázku odvodíte, samozřejmě nejprva musíte spočítat abs. hodnotu ze z, což jste udělal a vyšlo vám správně |z| = 1. v obrázku si vyznačte argument z, což je úhel α, který při zobrqazení v gaussově rovině svírá bod z (resp. jeho obraz [(odmocnina3/2), 1/2]) s reálnou osou. To jste asi udělal, nebylo by od věci sem ten obrázek dát, jak nabízíte. Musíte ovšem teno úhel brát jako orientovaný úhel s tím, že dle obecného úzu je kladný smysl úhlu proti směru hodinových ručičrk A je určen jednoznačně až na aditivní konstantu 2π, nebo ve stupních 360°

Vy jste určil sinus a kosinus úhlu α (vy ho značíte Fi, . ale to jsem nenašel v editoru a tak jsem dal přednost pojmenování "alfa"), ale to je jeden jediný úhel, hodnota α = -30° sice odpovídá tomu spočtenému sínu (mimochodem, proč probůh ji počítáte na kalkulačece, tu byste měl znát zpaměti), ale když se podíváte na obrázek, tak vidíte, že bod z s argumentem -30° leží ve čtvrtém kvadrantu a tedy x-ová souřadnice bude kladná a ne záporná. Ona totiž rovnice sin α = -½ (omlouvám se, že používám divis místo mínus, mínus není editor, ani po zásahu admina, schopen napsat) má dvě řešení, α = -30° a α = 210° (plus samozřejmě nekonečně mnoho dalších posunutých o k*360°), a které z těch řešení máte vzít, to poznáte podle znaménka kosínu (nebo podle doře interpretovaného obrázku). Podobné je to i s kosinem, zadaný vztah pro kosínus má dvě základní řešení, totiž α = 150° a α = 210°, zase + k*360°. Takže pro váš případ musíte vzít α = 210°, což vyhovuje oběma podmínkám.

Doufám, že už to teď bude jasné, snad jen dodám, že úhly je zde zvykem zadávat v obloukové míře, tedy ne α = -30° nebo α = 210° . ale α = π/6 atd, hodnotu α = 210° si převeďte sám.

Ohodnoceno: 0x
 

 

 

Přihlásit se k odběru odpovědí z této otázky:

Neneseme odpovědnost za správnost informací a za škodu vzniklou jejich využitím. Jednotlivé odpovědi vyjadřují názory jejich autorů a nemusí se shodovat s názorem provozovatele poradny Poradte.cz

 
Copyright © 2004-2016 Poradna Poradte.cz. Všechna práva na poradně Poradte.cz vyhrazena.