Nejste přihlášen/a.

Přihlásit se do poradny

 

Děti a dělení mincí

Od: cich odpovědí: 4 změna:

Dobrý den, také se trápím s příkladem, výsledek je v řešení, ale nevím, jak se k tomu došlo. Děkuji.

Skupina 15 dětí měla v obálce celkem 26 mincí – 13 pětikorun a 13 desetikorun.

Děti si peníze z obálky rovnoměrně rozdělily, ale nejprve musely několik mincí rozměnit.

K tomu využily nedalekého automatu, který měnil peníze na korunové mince.

Děti do automatu vložily nejmenší možný počet mincí, aby získaly potřebné drobné.

5.1kolik korun dostalo každé dítě;

5.2 kolik mincí děti vložily do automatu;

5.3 kolik korunových mincí děti získaly z automatu (vyberte jedno z možných řešení).

 

 

4 odpovědi na otázku
Řazeno dle hodnocení

 

 

vilik*

1x
To je jednoduché.
Součet všech hodnot mincí vydělený počtem dětí dá přesný obnos, který každé dítě dostane.
Potom postupuji tak, že se "zbavíme" pětikorun jako dosud nejmenších mincí, aby do automatu zbyly jen mince větší hodnoty. Těch použijeme 12 a jedna zbyde. Na dorovnání všem dětem použiji 9 desetikorun.
Zbytek desetikorun s pětikorunou naházím do automatu a podělím všechny děti. Počet potřebných korunových mincí vyplývá z vhozené sumy do automatu.

 


0x

Tak celková suma je 195 korun a na každé dítě připadá 13 korun. No a to je triviální odpověď na otázku první (ktterou je třeba chápat tak, že se ptáme,kolik dostane dítě korun, ne korunovách mincí. Toje snad jasné, ale trochu mást by to mohlo-

Aby bylo možné dát každému dítěti těch 13 vočí,musím pro každé dítě mít k dispozici alespoň tři korunové mince, celkem tedy 45 korun. Toho dosáhneme rozměněním čtyř desetikorun a jedné pětikoruny, ale stejný počet mincí, totižt, dává i rozměnění pěti desetikorun, jen pětikorun bude ve výsledku padesát. Nicméně odpověď na otázku 5.2 je, že děti do automatu vložily pět mincí. No a na otázku poslední jsou dvě+ možné odpovědi, touž psát explicitně nebudu.

K témuž výsledku dospělcelkem vtipnám způsobem i Vilík, jen z jeho postupu není zcela jasné (i když se to zdá plauzibilníá), že to jeho řešení je optimální .

(Jen na okraj dodám, že kdyby někdo pochopil zadání chymně tak, že si děti rovnoměrně rozdělily mince tak, aby kařdá jich měl stejný počet , stačilo by mu rozměnit jednu pětikorunu a získat tak 30mincí. Ale to snad nehrozí.)

 


0x

5.1.)

Celkem měli 13 krát 5 + 13 krát 10 korun což je 195 Kč

195 děleno 15 je 13 Kč.

5.2. a 5.3.)

Z mincí, které měli před rozměněním, každý dostal 10 Kč.

Dohromady je to 15 krát 10, což je 150 Kč.

Pokud by někteří dostali dvě pětikoruny a někteří desetikorunu, tak by zůstaly čtyři destikoruny a jedna pětikoruna.

Po rozměnění by měli 45 korunových mincí.

---

Pokud by někteří dostali desetikorunu tak, aby žádná desetikoruna nezbyla, tak 13 z nich by dosalo destikorunu a dva z nich by dostali po pětikoruně, takže by zbylo devět pětikorun, které by rozměnili na koruny.

No a co když budu měnit jednu desetikorunu a 7 pětikorun?

Jaksi se vytratila podmínka minimálního počtu měněných mincí.

 

 


 

 

 

Přihlásit se k odběru odpovědí z této otázky:

Neneseme odpovědnost za správnost informací a za škodu vzniklou jejich využitím. Jednotlivé odpovědi vyjadřují názory jejich autorů a nemusí se shodovat s názorem provozovatele poradny Poradte.cz.

Používáním poradny vyjadřujete souhlas s personifikovanou reklamou, která pomáhá financovat tento server, děkujeme.

Copyright © 2004-2025 Poradna Poradte.cz. Všechna práva vyhrazena. Prohlášení o ochraně osobních údajů. | [tmavý motiv]